F Test

(Testing Two Population Standard Deviations)

What is **F Test**?

It is a method used whenever we test two population standard deviations.

How do we set up H_0 and H_1 for this method?

Testing Type	H ₀	H_1
Two-Tail Test	$\sigma_1 = \sigma_2$	$\sigma_1 eq \sigma_2$
Left-Tail Test	$\sigma_1 \geq \sigma_2$	$\sigma_1 < \sigma_2$
Right-Tail Test	$\sigma_1 \leq \sigma_2$	$\sigma_1 > \sigma_2$

What information do we need to perform **F** Test?

We need sample size and sample standard deviation from each sample randomly selected from each population. It is recommended to organize the information in the form of a table as shown below.

Sample 1	Sample 2
n_1	n ₂
s_1	<i>s</i> ₂

Where

- $ightharpoonup s_1 > s_2$, This is a must. If it is not, simply switch the samples.
- ► CTS $F = \frac{s_1^2}{s_2^2}$, Always round to 3-decimal places when needed.
- ▶ Ndf = $n_1 1$ & Ddf = $n_2 1$.

Example:

Use the chart below to test the claim that two population standard deviations are the same.

Sample 1	Sample 2
$n_1 = 10$	$n_2 = 12$
$s_1 = 8$	$s_2 = 4$

Solution:

We begin by setting up H_0 and H_1 .

 $H_0: \sigma_1 = \sigma_2$ Claim

 $H_1: \sigma_1 \neq \sigma_2$ TTT

No significance level given, we must use $\alpha = 0.05$

We now find the following

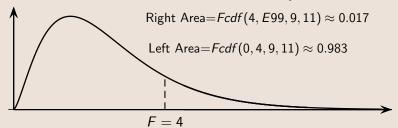
►
$$s_1 > s_2 \checkmark$$

► CTS
$$F = \frac{s_1^2}{s_2^2} = \frac{8^2}{4^2} = 4$$
.

$$ightharpoonup$$
 Ndf = $n_1 - 1 = 10 - 1 = 9$.

▶ **Ddf** =
$$n_2 - 1 = 12 - 1 = 11$$
.

We now draw the F distribution curve and clearly label.



Since it is a **TTT**,

$$P - Value = 2 \cdot$$
 Smaller Area $\approx 2 \cdot 0.017 \approx 0.034$.

p—value is less than the significance level 0.05, therefore H_0 is invalid, and we reject the claim.

If we choose α to be 0.03, 0.02, or 0.01, then p-value is greater than the new significance level, therefore H_0 will be valid, and we fail to reject the claim.

F Test & TI

Press STAT, go to TESTS, arrow down to find 2-SampFTest.

```
EDIT CALC Metur
B†2-PropZInt...
C:X²-Test...
D:X²GOF-Test...
B:LinRe9TTest...
G:LinRe9TInt...
H:ANOVA(
```

F Test & TI

Now enter the data from the table in **2-SampFTest**, then press **Calculate** to execute **2-SampFTest**.

```
Esomsaicu
Inpt:Data Sists
Sx1:8
n1:10
Sx2:4
n2:12
σ1:130% (σ2 )σ2
Calculate Draw
```

F Test & TI

The display below is from executing **2-SampFTest**.

These results confirm our earlier findings.

Example:

A sample of 15 female students were randomly selected and the standard deviation of their ages was 9 years. In another sample of 10 male students, the standard deviation of their ages was 5 years.

Use 0.02 level of significance to test the claim that standard deviation of ages of all female students is different from standard deviation of ages of all male students.

Solution:

We begin by setting up H_0 and H_1 .

$$H_0: \sigma_1 = \sigma_2$$

$$H_1: \sigma_1 \neq \sigma_2$$
 Claim & TTT

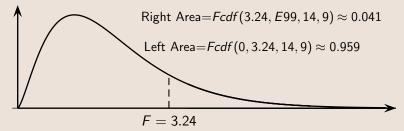
Significance level given, $\alpha = 0.02$

We can organize the given information in the following table.

Females	Males
$n_1 = 15$	$n_2 = 10$
$s_1 = 9$	$s_2 = 5$

- ► $s_1 > s_2 \checkmark$ ► CTS $F = \frac{s_1^2}{s_2^2} = \frac{9^2}{5^2} = 3.24.$
- ▶ Ndf = $n_1 1 = 15 1 = 14$.
- ightharpoonup **Ddf** = $n_2 1 = 10 1 = 9$.

We now draw the F distribution curve and clearly label.



Since it is a **TTT**,

$$P-Value=2 \cdot$$
 Smaller Area $\approx 2 \cdot 0.041 \approx 0.082.$

p-value is greater than the significance level 0.02, therefore H_1 is invalid, and we reject the claim.

We can verify these answers by using the **TI** command **2-SampFTest** to confirm their accuracy.

If we choose α to be 0.09 or 0.1, then p-value would be less than the new significance level, therefore H_1 will be valid, and we fail to reject the claim.

Example:

Use the chart below to suggest the significance level α to fail to reject the claim that $\sigma_1 > \sigma_2$.

Sample 1	Sample 2
$n_1 = 5$	$n_2 = 15$
$s_1 = 13$	$s_2 = 6$

Solution:

We begin by setting up H_0 and H_1 .

 $H_0: \sigma_1 \leq \sigma_2$

 $H_1: \sigma_1 > \sigma_2$ Claim & RTT

Now we use the TI command 2-SampFTest to find the p-Value.

p-Value
$$p = .013$$

For H_1 to be valid, we want $p \le \alpha$, so we want $0.013 \le \alpha$.

Choose α to be 0.02, 0.03, 0.04, and so on.